There is so much more to Gear Expo than gears or the machinery that makes them. That's because it takes much, much more to make a finished gear than even the most sophisticated machine. And it is exhibitors who are part of the "much, much, more" that are addressed in this article.
The hob is a perfect example of how a little manufacturing ingenuity can make a reliable, highly productive cutting tool. It's an engineering specimen
that creates higher cutting speeds, better wear resistance and increases rigidity. The cutting tool alone, however, can't take all the credit for its resourcefulness. Advanced coating
technology from companies like Sulzer, Oerlikon Balzers, Ionbond, Seco Tools and Cemecon helps improve cutting tools by reducing overall costs, increasing tool life and maintaining the highest levels of productivity. The following is a quick recap of new technologies
and the latest information in the coating market.
The method of cutting teeth on a cylindrical gear by the hobbing process has been in existence since the late 1800s. Advances have been made over the years in both the machines and the cutting tools used in the process. This paper will examine hob tool life and the many variables that affect it. The paper will cover the state-of-the-art cutting tool materials and coatings, hob tool design
characteristics, process speeds and feeds, hob shifting strategies, wear characteristics, etc. The paper will also discuss the use of a common denominator method for evaluating hob tool life in terms of meters (or inches) per hob tooth as an alternative to tool life expressed in parts per sharpening.
A main limiting factor in extending the use of hard coatings to machine component application is the lack of knowledge about how these inert coatings perform under lubricated conditions using today's lubricants.