The objective of this work is to introduce a method for the calculation of the tooth root load carrying capacity for gears, under consideration of the influence of the defect size on the endurance fatigue strength of the tooth root. The theoretical basis of this method is presented in this paper as well as the validation in running tests of helical and beveloid gears with different material batches, regarding the size distribution of inclusions. The torque level for a 50 percent failure probability of the gears is evaluated on the test rig and then compared to the results of the simulation. The simulative method allows for a performance of the staircase method that is usually performed physically in the back-to-back tests for endurance strength, as the statistical influence of the material properties is considered in the calculation model. The comparison between simulation and tests shows a high level of accordance.
Gear designers face constant pressure to increase power density in their drivetrains. In the automotive industry, for example, typical engine torque has increased significantly over the last several decades. Meanwhile, the demands for greater fuel efficiency mean designers must accommodate these increased loads in a smaller, more lightweight package than ever before. In addition, electric and hybrid vehicles will feature fewer gears, with fewer transmission speeds, running at higher rpms, meaning the gears in those systems will have to endure life cycles far beyond what is typical with internal combustion engines.
Reduced component weight and ever-increasing power density require a gear design on the border area of material capacity. In order to exploit the potential offered by modern construction materials, calculation methods for component strength must rely on a deeper understanding of fracture and material mechanics in contrast to empirical-analytical approaches.