Gear skiving offers great opportunities
for production with step-changing
productivity, particularly for internal gears,
whilst offering high-quality finishing
capabilities and being applicable on a
5-axis machine tool with its inherent
flexibility and multifunctionality.
The research presented in this paper extends the work done on CAD-based simulation approaches with an investigation of the surface topography of gears produced through gear skiving and the investigation of the cutting tool characteristics on the geometry of the produced gear. The study is complemented with the investigation of the cutting forces required in the machining process.
To increase cost efficiency in wind turbines, the wind industry
has seen a significant rise in power density and an increase in the overall size of geared components. Current designs for multimegawatt turbines demand levelized cost of energy (LCOE) reduction, and the gearbox is a key part of this process. Since fatigue failures nearly always occur at or near the surface, where the stresses are greatest, the surface condition strongly affects the gear life. Consequently, an improved surface condition effectively avoids major redesign or increased material cost due to an increase in part size. Additional finishing methods such as shot peening (SP) and superfinishing (SF) significantly increase the gear load capacity, but these effects have not yet been adequately considered in the current ISO 6336 standard or in any other gear standards. The combination of SP followed by SF will be described here as an “improved gear surface” (IGS).
Aircraft engines can be made more efficient by integrating planetary gears. In such an application, the planetary gears experience very high load cycles under fully reversed bending loads. Pulsator test rigs, which nowadays offer the possibility to perform UHCF investigations, can only be used for purely pulsating loading of gears. Therefore, for the investigation of the UHCF tooth root load carrying capacity under fully reversed bending load, a back-to-back test rig is required. Back-to-back test rigs usually have speeds of n = 3,000 rpm, which makes investigations in the UHCF range take a very long time. Therefore, a high-speed back-to-back test rig was developed.
The fascination of the automotive differential has led to the idea to build a second differential unit around a first center unit. Both units have the same axes around which they rotate with different speeds. The potential of double differentials as ultrahigh reduction speed reducers is significant. Only the tooth-count of the gears in the outer differential unit must be changed in order to achieve ratios between 5 and 80 without a noticeable change of the transmission size.
The objective of this paper is to develop a method for the algorithm-based design and optimization of the macrogeometry of stepped planetary gear stages.
The objective of this paper is to improve the methodology for determining the tooth flank temperature. Two methods are proposed for assessing scuffing risk when applying AGMA 925 for high-speed gears. Both methods provide similar results.