Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.
Power train designs which employ gears with cone angles of approximately 2 degrees to 5 degrees have become quite common. It is difficult, if not impossible, to grind these gears on conventional bevel gear grinding machines. Cylindrical gear grinding machines are better suited for this task. This article will provide an overview of this option and briefly introduce four grinding variation possibilities.
Because of the better thermal conductivity of CBN abrasives compared to that of conventional aluminum oxide wheels, CBN grinding process, which induces residual compressive stresses into the component, and possibly improves the subsequent stress behavior. This thesis is the subject of much discussion. In particular, recent Japanese publications claim great advantages for the process with regard to an increased component load capacity, but do not provide further details regarding the technology, test procedures or components investigated. This situation needs clarification, and for the this reason the effect of the CBN grinding material on the wear behavior and tooth face load capacity of continuously generated ground gears was further investigated.
This is Part II of a two-part series on the basics of gear hobbing. Part I discussed selection of the correct type of hobbing operation, the design features of hobs and hob accuracy. This part will cover sharpening errors and finish hob design considerations.
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ration under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque and power. Significant parameters in the design are the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near-optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
The Hobbing Process
The hobbing process involves a hob which is threaded with a lead and is rotated in conjunction with the gear blank at a ratio dependent upon the number of teeth to be cut. A single thread hob cutting a 40-tooth gear will make 40 revolutions for each revolution of the gear. The cutting action in hobbing is continuous, and the teeth are formed in one passage of the hob through the blank. See Fig. 1 for a drawing of a typical hob with some common nomenclature.
Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.
The complete and accurate solution t the contact problem of three-dimensional gears has been, for the past several decades, one of the more sought after, albeit elusive goals in the engineering community. Even the arrival on the scene in the mid-seventies of finite element techniques failed to produce the solution to any but the most simple gear contact problems.
New freedom of motion available with CNC generators make possible improving tooth contact on bevel and hypoid gears. Mechanical machines by their nature are inflexible and require a special mechanism for every desired motion. These mechanisms are generally exotic and expensive. As a result, it was not until the introduction of CNC generators that engineers started exploring motion possibilities and their effect on tooth contact.
The use of dimensionless factors to describe gear tooth geometry seems to have a strong appeal to gear engineers. The stress factors I and J, for instance, are well established in AGMA literature. The use of the rack shift coefficient "x" to describe nonstandard gear proportions is common in Europe, but is not as commonly used in the United States. When it is encountered in the European literature or in the operating manuals for imported machine tools, it can be a source of confusion to the American engineer.