Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.
The curved tooth cylindrical gear is one of ancient design. Samples which date from the period of the Warring State (475-221 BC) have been excavated from archeological sites in China. One such sample is now on display in the Xi'an Clay figures of Warriors and Horses Exhibition Hall. This example is about 3/4" in diameter and made of bronze. It was used in the famous model, "Ancient Chinese Vehicle With a Wooden Figure Always Pointing to the South." Although this early gear is handmade and somewhat crude, it is a viable model.
The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.
Although there is plenty of information and data on the determination of geometry factors and bending strength of external gear teeth, the computation methods regarding internal gear design are less accessible. most of today's designs adopt the formulas for external gears and incorporate some kind of correction factors for internal gears. However, this design method is only an approximation because of the differences between internal gears and external gears. Indeed, the tooth shape of internal gears is different from that of external gears. One has a concave curve, while the other has a convex curve.
Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.
The NASA Lewis Research Center investigated the effect of tooth profile on the acoustic behavior of spur gears through experimental techniques. The tests were conducted by Cleveland State University (CSU) in NASA Lewis' spur gear testing apparatus. Acoustic intensity (AI) measurements of the apparatus were obtained using a Robotic Acoustic Intensity Measurement System (RAIMS). This system was developed by CSU for NASA to evaluate the usefulness of a highly automated acoustic intensity measurement tool in the reverberant environment of gear transmission test cells.
Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.
Consisting of only a ring gear b meshing with one or two planets a, a carrier H and an equal velocity mechanism V, a KHV gearing(Fig. 1) is compact in structure, small in size and capable of providing a large speed ratio. For a single stage, its speed ratio can reach up to 200, and its size is approximately 1/4 that of a conventional multi-stage gear box.
Vehicle gear noise testing is a complex and often misunderstood subject. Gear noise is really a system problem.(1) most gearing used for power transmission is enclosed in a housing and, therefore, little or no audible sound is actually heard from the gear pair.(2) The vibrations created by the gears are amplified by resonances of structural elements. This amplification occurs when the speed of the gear set is such that the meshing frequency or a multiply of it is equal to a natural frequency of the system in which the gears are mounted.
The geometry factor, which is a fundamental part of the AGMA strength rating of gears, is currently computed using the Lewis parabola which allows computation of the Lewis form factor.(1) The geometry factor is obtained from this Lewis factor and load sharing ratio. This method, which originally required graphical construction methods and more recently has been computerized, works reasonably well for external gears with thick rims.(2-6) However, when thin rims are encountered or when evaluating the strength of internal gears, the AGMA method cannot be used.