The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum.
A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form:
Integrated gear/shaft/bearing systems
Effects of rim thickness on gear tooth stresses
Resonant response
The quality of gearing is a function of many factors ranging from design, manufacturing processes, machine capability, gear steel material, the machine operator, and the quality control methods employed. This article discusses many of the bevel gear manufacturing problems encountered by gear manufacturers and some of the troubleshooting techniques used.
Some years back, most spiral bevel gear sets were produced as cut, case hardened, and lapped. The case hardening process most frequently used was and is case carburizing. Many large gears were flame hardened, nitrided, or through hardened (hardness around 300 BHN) using medium carbon alloy steels, such as 4140, to avoid higher distortions related to the carburizing and hardening process.
Service performance and load carrying capacity of bevel gears strongly depend on the size and position of the contact pattern. To provide an optimal contact pattern even under load, the gear design has to consider the relative displacements caused by deflections or thermal expansions expected under service conditions. That means that more or less lengthwise and heightwise crowning has to be applied on the bevel gear teeth.
In robot configurations it is desirable to be able to obtain an arbitrary orientation of the output element or end-effector. This implies a minimum of two independent rotations about two (generally perpendicular) intersecting axes. If, in addition, the out element performs a mechanical task such as in manufacturing or assembly (e.g., drilling, turning, boring, etc.) it may be necessary for the end-effector to rotate about its axis. If such a motion is to be realized with gearing, this necessitates a three-degree-of-freedom, three-dimensional gear train, which provides a mechanical drive of gyroscopic complexity; i.e., a drive with independently controlled inputs about three axes corresponding to azimuth, nutation, and spin.
Recently it has been suggested that the transverse plane may be very useful in studying the kinematics and dynamics of spiral bevel gears. The transverse plane is perpendicular to the pitch and axial planes as shown in Fig. 1. Buckingham has suggested that a spiral bevel gear may be viewed as a limited form of a "stepped" straight-tooth gear as in Fig. 2. The transverse plane is customarily used in the study of straight toothed bevel gears.
Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.
The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.
Spiral-bevel gears, found in many machine tools, automobile rear-axle drives, and helicopter transmissions, are important elements for transmitting power.