"We're taking over," says Art Milano. It's a bold statement from the engineering manager of Seitz Corporation, one of the largest manufacturers of injection molded plastic gears, but Milano has reason for his optimism. Plastic gears are big business-probably bigger than most gear industry "insiders" realize.
Hoechst Technical Polymers has expanded its interests in plastic gears with the introduction of the new Plastic Gear Evaluation and Research machine P-Gear. The machine is the centerpiece of the company's continuing efforts to promote and develop the use of plastic gears in higher-powered applications.
The type of lubricant and the method of applying it to the tooth flanks of large open gears is very important from the point of view of lubrication technology and maintenance. When selecting the type of lubricant and the application method, it is important to check whether it is possible to feed the required lubricant quantity to the load-carrying tooth flanks, This is necessary to avoid deficient lubrication, damage to the gear and operational malfunctions. It is important to determine the type of lubricant, which may be fluid or grease-like. The consistency of the lubricant will have a direct impact on the ability of the lubrication system to feed adequately the lubricant to the gear. The interactions between the common types of lubricant and the lubrication application methods for open gear drives are shown in Fig. 1.
Plastic gears are serious alternatives to traditional metal gears in a wide variety of applications. The use of plastic gears has expanded from low-power, precision motion transmission into more demanding power transmission applications. As designers push the limits of acceptable plastic gear applications, more is learned about the behavior of plastics in gearing and how to take advantage of their unique characteristics.
The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.
Gears are manufactured with thin rims for several reasons. Steel gears are manufactured with thin rims and webs where low weight is important. Nonmetallic gears, manufactured by injection molding, are designed with thin rims as part of the general design rule to maintain uniform thickness to ensure even post-mold cooling. When a thin-rimmed gear fails, the fracture is thought the root of the gear, as shown in Fig. 1a, rather than the usual fillet failure shown in Fig. 1b.
Surface measurement of any metal gear tooth contact surface will indicate some degree of peaks and valleys. When gears are placed in mesh, irregular contact surfaces are brought together in the typical combination of rolling and sliding motion. The surface peaks, or asperities, of one tooth randomly contact the asperities of the mating tooth. Under the right conditions, the asperities form momentary welds that are broken off as the gear tooth action continues. Increased friction and higher temperatures, plus wear debris introduced into the system are the result of this action.
Advancements in machining and assembly techniques of thermoplastic gearing along with new design data has lead to increased useage of polymeric materials. information on state of the art methods in fabrication of plastic gearing is presented and the importance
of a proper backlash allowance at installation is discussed. Under controlled conditions, cast nylon gears show 8-14 dBA. lower noise level than three other gear materials tested.
The use of plastic gearing is increasing steadily in new products.
This is due in part to the availability of recent design data. Fatigue
stress of plastic gears as a function of diametral pitch, pressure angle,
pitch line velocity, lubrication and life cycles are described based
on test information. Design procedures for plastic gears are presented.
One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation.
Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the
plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.