At the dawn of the Industrial
Revolution, so-called mechanics
were tasked with devising the precise methods that would make mass production possible. The result was the first generation of machine tools, which in turn required improved tooling and production methods.
A finite elements-based contact model is developed to predict load distribution along the spline joint interfaces; effects of spline misalignment are investigated along with intentional lead crowning of the contacting surfaces. The effects of manufacturing tooth indexing error on spline load distributions are demonstrated by using the proposed model.
Involute spline couplings are used to transmit torque from a shaft to a gear hub or other rotating component.
External gear teeth on the shaft engage an equal number of internal teeth in the hub. Because multiple teeth engage
simultaneously, they can transmit much larger torques than a simple key and keyway assembly. However, manufacturing
variations affect the clearance between each pair of mating teeth, resulting in only partial engagement.
Introducing backlash into spline couplings has been common practice in order to provide for component eccentric and angular misalignment. The method presented here is believed to be exact for splines with even numbers of teeth and approximate for those with odd numbers of teeth. This method is based on the reduction of the maximum effective tooth thickness to achieve the necessary clearance. Other methods, such as tooth crowning, are also effective.