It's not easy being big. Maybe that's not exactly how the phrase goes, but it's applicable, particularly when discussing the quality requirements of large gears. The size alone promises unique engineering challenges. BONUS Online Exclusive: Big or Small - Inspection is Key to Success.
Part I of this paper describes the theory behind double-flank composite inspection, detailing the apparatus used, the various measurements that can be achieved using it, the calculations involved and their interpretation. Part II, which will appear in the next issue, includes a discussion of the practical application of double-flank composite inspection, especially for large-volume operations. Part II covers statistical techniques that can be used in conjunction with double-flank composite inspection, as well as an in-depth analysis of gage R&R for this technique.
It has long been known that the skiving
process for machining internal gears is
multiple times faster than shaping, and
more flexible than broaching, due to skiving's continuous chip removal capability. However, skiving has always presented a challenge to machines and tools. With the relatively low dynamic stiffness in the gear trains of mechanical machines, as well as the fast wear of uncoated cutters, skiving of cylindrical gears never achieved acceptance in shaping or hobbing, until recently.
Much of the existing guidelines for making large, high-performance gears for wind turbine gearboxes exhibit a need for improvement. Consider: the large grinding stock used to compensate for heat treatment distortion can significantly reduce manufacturing productivity; and, materials and manufacturing processes are two other promising avenues to improvement. The work presented here investigates quenchable alloy steels that, combined with specifically developed Case-hardening and heat treatment processes, exhibits reduced distortion and, in turn, requires a smaller grinding stock.
When they’re not solving the latest
mechanical engineering puzzle, the
seven members of the group sINGer are
busy engineering their voices to create
the perfect sound. Yes, you read that correctly. Mechanical engineers do have hobbies outside of gears.
Video from C&B Machinery; Introducing the Gear Technology Blog, featuring technical editor Charles D. Schultz; plus an online-exclusive article on big gear inspection.
With all the advantages of building float into a planetary gear system, what advantages are there to using a carrier in the first place, rather than simply having your planets float in the system?