Welcome to the new Gear Technology. With this issue we begin bringing you a new look - a new cover, new graphics, a new, broader and more inclusive editorial focus. Our goal is to be an even better resource for the entire gear industry.
These days it's hard to get through breakfast without reading or hearing another story about how the computer is changing the way we live, sleep, eat, breathe, make things and do business. The message is that everything is computerized now, or, if it isn't, it will be by next Tuesday at the latest, Well, maybe.
It used to be that a shop with hustle and plenty of big, fast machines could thrive using a manual system. But no more. Today's economic environment requires more and more in the way of topnotch service and quick turnaround - which frequently means a completely integrated shop floor control system.
Gear design has long been a "black art." The gear shop's modern alchemists often have to solve problems with a combination of knowledge, experience and luck. In many cases, trial and error are the only effective way to design gears. While years of experience have produced standard gearsets that work well for most situations, today's requirements for quieter, more accurate and more durable gears often force manufacturers to look for alternative designs.
What follows is the first of a series of interviews Gear Technology is conducting with leaders in the gear industry. We will be asking them for their insights on where the industry is, where it's been and where they see it going in the future. Our first interview is with Jim Gleason, president and chairman of Gleason Corporation, Rochester, NY.
You're already a veteran of the computer revolution. Only you and your controller know how much money you've spent and only your spouse knows how many sleepless nights you've had in the last ten years trying to carve out a place in the brave new world of computerized gear manufacturing. PC's, CNCs, CAD, CAM, DNC, SPC, CMM: You've got a whole bowl of alphabet soup out there on the shop floor. Overall these machines have lived up to their promises. Production time is down, quality is up. You have fewer scrapped parts and better, more efficient machine usage.
Arrow Gear Company of Downers Grove, IL, has implemented a computer system that fully integrates exchange between all of its computer applications. The ELIMS (Electronic Linkage of Information Management Systems) project has increased manufacturing productivity and reduced lead times.
A research program, conducted in conjunction with a U.S. Army contract, has resulted in the development of manufacturing technology to produce a multi-metal composite gear/shaft representing a substantial weight savings compared to a solid steel component. Inertia welding is used to join a steel outer ring to a light-weight titanium alloy web and/or shaft through the use of a suitable interlayer material such as aluminum.
Good References
In the 7th Edition of McGraw Hill Encyclopedia of Science and Technology, 10 pages are devoted to the subjects of Gears, Gear Cutting and Gear Trains.
NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.