Long-time readers of these pages will know that I have always felt strongly about the subject of professional education. There's nothing more important for an individual's career development than keeping up with current technology. likewise, there's nothing more important that a company can do for itself and it employees than seeing to it they have the professional education they need. Giving people the educational tools they need to do their jobs is a necessary ingredient for success.
Okay. You've been convinced. You've gritted your teeth and decided to spend the money to launch a company Web site. Everybody from your teenage propeller-head to the girl in the mail room and the salesman in the flashy suit who gave you "such a deal" on Web site services has promised that your site will be the best thing that's happened to your business since the advent of CNC machines.
Many potential problems are not apparent when using new induction heat treating systems. The operator has been trained properly, and setup parameters are already developed. Everything is fresh in one's mind. But as the equipment ages, personnel changes or new parts are required to be processed on the old equipment ages, personnel changes or new parts are required to b processed on the old equipment, important information can get lost in the shuffle.
Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gear set through mesh. With the advent of user-specific programming linked to 3-D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gear set it placed in mesh, user subroutines attached to the FE code easily roll it through mesh. The method is described in detail. Preliminary result for a gear set segment showing the progression of the contact line load is given as the gears roll through mesh.
The process of nitriding has been used to case harden gears for years, but the science and technology of the process have not remained stagnant. New approaches have been developed which are definitely of interest to the gear designer. These include both new materials and new processing techniques.
The Instrumented Factory for Gears (INFAC) conducted a metallurgical experiment that examined the effects of carburizing process variables and types of cryogenic treatments in modifying the microstructure of the material. The initial experiment was designed so that, following the carburizing cycles, the same test coupons could be used in future experiment.
Broaching is a process in which a cutting tool passes over or through a part piece to produce a desired form. A broach removes part material with a series of teeth, each one removing a specified amount of stock.
Back in the days when our great, great, great, etc., grandaddies were designing gears, one of the most common materials in use was wood. For fairly obvious reasons, we don't see too many wooden gears around anymore. But there are a few.
Joe Garfien came to America in 1928 to play soccer. He also learned to cut gears and build a business.
"When I came here [to America] I came in on a Friday, and I had to go work on Monday, so I found a job at Perfection Gear...and that's how I got started in gears."