Most Navy brass would say that Commander D. Michael Abrashoff ran a loose ship. But his style of empowering his crew by delegating authority is changing the way the Navy thinks about management. His speech at the recent annual meeting of the American Gear Manufacturers Association offered a simple, common-sense approach that can be applied not only to running a ship, but also to gear manufacturing or any other industry.
Geoffrey Parrish has updated and expanded his previous book: The Influence of Microstructure on the Properties of Case-Carburized Components. It now contains at least twice the material. References and bibliography include 449 citations.
Plastic gears and transmissions require a different design approach than metal transmissions. Different tools are available to the plastic transmission designer for optimizing his geared product, and different requirements exist for inspection and testing.
This paper will present some of the new technology available to the plastic gear user, including design, mold construction, inspection, and testing of plastic gears and transmissions.
This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.
In general, bevel gears and curvic couplings are completely different elements. Bevel gears rotate on nonintersecting axis with a ratio based on the number of teeth. Curvic couplings work like a clutch (Fig. 1).
When the steam engine became available for industrial use at the end of the eighteenth century, it was mainly used for driving plunger-pumps, such as those used in English coal mines. The stream engine's piston drove a lever, that reciprocating motion of which drove the pump plunger. Called the "Beam Machine," this mechanism needed a lot of space, had many parts, and was difficult to install because the engine and the pump had to be properly aligned.
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.