Getting and keeping a work force capable of meeting the demands of the 21st century is one of the key challenges most U.S. manufacturers face today. That's not even news anymore. I - and others - have been talking about it in editorials and speeches for ten years now. It's also not news that the job is a tough one and that industry-wide response often has not been particularly effective.
"More than half our young people leave school without the knowledge or foundation required to find and hold a job." according to a 1991 report from the U.S. Dept. of Labor. A huge gap exists between the needs of employers (especially in manufacturing) and the training received by most high school students.
Can a gear profile generated by the hobbing method be an ideal involute? In strictly theoretical terms - no, but in practicality - yes. A gear profile generated by the hobbing method is an approximation of the involute curve. Let's review a classic example of an approximation.
When designing hardened and ground spur gears to operate with minimum noise, what are the parameters to be considered? should tip and/or root relief be applied to both wheel and pinion or only to one member? When pinions are enlarged and he wheel reduced, should tip relief be applied? What are the effects on strength, wear and noise? For given ratios with enlarged pinions and reduced wheels, how can the gear set sized be checked or adjusted to ensure that the best combination has been achieved?
simplified equations for backlash and roll test center distance are derived. Unknown errors in measured tooth thickness are investigate. Master gear design is outlined, and an alternative to the master gear method is described. Defects in the test radius method are enumerated. Procedures for calculating backlash and for preventing significant errors in measurement are presented.
Many people in the gear industry have heard of skiving, a process wherein solid carbide or inserted carbide blade hobs with 15 - 60 degrees of negative rake are used to recut gears to 62 Rc. The topic of this article is the use of neutral (zero) rake solid carbide hobs to remove heat treat distortion, achieving accuracies of AGMA 8 to AGMA 14, DIN 10-5 and improving surface finish on gears from 8 DP - 96 DP (.3 module - .26 m.).
I noted with interest the beginning of Gear Technology's three-part series on ISO 9000 certification. I also recently attended Brown & Sharpe's/Leitz gear metrology seminar. Both events caused me to smile and reflect.
On of the key questions confronting any company considering ISO 9000 certification is, how much is this going to cost? The up-front fees are only the beginning. Dissect the ISO 9000 certification procedure with an eye for hidden costs, and two segments of the process will leap out - the cost of consultants and the cost of making in-house improvements for the sake of passing certification. Most of these costs can be controlled by careful selection f the right consultant in the first place.