I'm a big believer in the value of IMTS as a marketplace where gear manufacturers can go and look at the latest machine tools and processes; compare hobbing machines, gear grinders and inspection equipment; see turning, milling or grinding machines in action; and ask questions of the various vendors all in one place. This year's IMTS promised to be the biggest ever, and I have no doubt that it will be a valuable experience to those who go there looking for ways to improve the way they manufacture products.
Until recently, there was a void in the quality control of gear manufacturing in this country (Ref. 1). Gear measurements were not traceable to the international standard of length through the National Institute of Standards and Technology (NIST). The U.S. military requirement for traceability was clearly specified in the military standard MIL-STD-45662A (Ref. 2). This standard has now been replaced by commercial sector standards including ISO 9001:1994 (Ref. 3), ISO/IEC Guide 25 (Ref, 4), and the U.S. equivalent of ISO/IEC Guide 25 - ANSI/NCSL Z540-2-1997 (Ref. 5). The draft replacement to ISO/IEC Guide 25 - ISO 17025 states that measurements must either be traceable to SI units or reference to a natural constant. The implications of traceability to the U.S. gear industry are significant. In order to meet the standards, gear manufacturers must either have calibrated artifacts or establish their own traceability to SI units.
It used to be that gear manufacturers wanting to perform analytical gear inspection required at least three machines to do so: The lead measuring instrument, the tooth space comparator and the involute checking instrument. In the beginning, these machines were mechanically driven. Over the years, the manufacturers of analytical gear inspection equipment have combined these functions - and a host of others.
Founded in 1927 as the Machine Tool Show and held every two years, the International Manufacturing Technology Show (IMTS) has grown into the largest manufacturing trade show in both North and South America. The statistics for the 1998 show offer a glimpse of the magnitude. Over 1,440 exhibitors showed off 60 million pounds of machinery and went through 5 million pounds of display materials during the week long show. The show organizers themselves sent out 2,632,560 promotional pieces. Twenty-three foreign machine tool associations participated. It took 4,600 trucks to get everything to McCormick Place for the show. There were 450 journalists covering the event, which was attended by 121,764 people. There was $1,034.618,000 worth of business transacted on the show floor of IMTS 1998.
Would you like to be able to see the condition of the gears in your transmissions without having to open the box and physically examine them? There is a way, and not too many people know about it. It's called Wear Particle Analysis, or ferrography, and it is just starting to get noticed.
This section is dedicated to what's new and what's happening in the world of gear inspection and metrology. Here you will find news about products, companies and organizations, services and events affecting the gear inspection and metrology industry.
Nowadays, finish hobbing (which means that there is no post-hobbing gear finishing operation) is capable of producing higher quality gears and is growing in popularity.
Noncircular gearing is not new. There are well-documented articles covering standard and high order elliptical gears, sinusoidal gears, logarithmic spiral gears, and circular gears mounted eccentrically. What these designs have in common is a pitch curve defined by a mathematical function. This article will cover noncircular gearing with free-form pitch curves, which, of course, includes all the aforementioned functions. This article also goes into the generation of teeth on the pitch curve, which is not usually covered in the technical literature. Needless to say, all this is possible only with the help of a computer.
Oliver E Saari was an engineer with two great professional loves in his life - writing and gear design, and he was devoted to each in their turn. The same original thinking that informed his fiction, giving life to tales of space exploration, the evolution of man, and many other topics, let him to become one of the great pioneers in gear design.
The Millenium Outlook article in the January/February 2000 issue of Gear Technology explored the prevailing attitudes of the gear industry as it stands on the brink of the new millenium through the thoughts and words of some of the industry's leaders. The article also placed the gear industry within the framework of 20th Century history. Joe Arvin, President of Arrow Gear, was interviewed for this article and requested an opportunity to elaborate on his published comments.
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.