Beginning with this issue, one of the last bits of the "old" Gear Technology is gone. From now on we'll be running the new picture of me you see on this page. It was time, my art and editorial staff explained to me, to move ahead with the rest of the updated art and editorial in the magazine. (I emphatically deny that the real motivation for the new picture was putting a stop to the ever-increasing number of jabs from certain friends about my "Dorian Gray" look.)
For this interview, we spoke with George Wyss, president, and Dennis Richmond, vice president of Reishauer Corporation about gear grinding and its place in gear manufacturing today.
An engineer's responsibility for verifying a new design or product concept as manufacturable early in the development cycle is a tough challenge. What appears to work on a blueprint or in a three-dimensional CAD file on a computer screen many not work on the factory floor; and the downstream impact on the manufacturing process of an undetected design flaw can be enormous. Costs can run into the millions.
Gear grinding is one of the most expensive and least understood aspects of gear manufacturing. But with pressures for reduced noise, higher quality and greater efficiency, gear grinding appears to be on the rise.
In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.
What Is Whisker-Reinforced Ceramic?
Whisker-reinforced ceramic as applied to cutting tool inserts comprises a matrix of aluminum oxide into which approximately 50% by volume of high-purity silicon carbide "whiskers" are randomly dispersed. The "whiskers" are, in fact, single crystals having dimensions of approximately 0.6 microns in diameter x 10-80 microns in length. These "whiskers" have a tensile strength on the order of 1,000,000 psi (690 MPa). The composite material that is the best known and most widely applied using this technology is designated WG-300 and manufactured by the Greenleaf Corporation of Saegertown, PA.
In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.
In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.
There are problems in dimensional measurement that should be simple to solve with standard measuring procedures, but aren't. In such cases, using accepted practices may result in errors of hundreds of microns without any warning that something is wrong.
Gear Technology's bimonthly aberration - gear trivia, humor, weirdness and oddments for the edification and amusement of our readers. Contributions are welcome.
The popular perception today is that technological advancement is an engine running almost out of control. New products and processes are developing faster than we can keep up with them, as anyone who has had a new computer system crash into obsolescence practically before it's out of the box can tell you. But that's not the case everywhere. Transmission technology, for example.
Chicago- Results of recent studies on residual stress in gear hobbing, hobbing without lubricants and heat treating were reported by representatives of INFAC (Instrumented Factory for Gears) at an industry briefing in March of this year.
Question: We are contemplating purchasing a hobbing machine with dry hobbing capabilities. What do we need to know about the special system requirements for this technology?