In May of this year the U.S. International Trade Commission made public its Report to the President on the condition of the U.S. gear industry. This 200+ page document is the result of a two-year study by the commission, with the help of the AGMA staff and members. It is the most comprehensive and current analytical coverage of the industry conditions and tends presently available. Because of the importance of this report to the industry, GEAR TECHNOLOGY is devoting a good portion of this issue to reprinting the Executive Summary for our readers.
In March 1989, the U.S. Trade Representative requested the U.S. International Trade Commission to conduct an investigation and prepare a report on the competitive position of the U.S. gear industry in U.S. and global markets.
On many occasions a reasonably approximate, but not exact, representation of an involute tooth profile is required. Applications include making drawings, especially at enlarged scale, and laser or EDM cutting of gears, molds, and dies used to produce gears. When numerical control (NC) techniques are to be used, a simple way to model an involute can make the NC programming task much easier.
Engineering design requires many different types of gears and splines. Although these components are rather expensive, subject to direct wear, and difficult to replace, transmissions with gears and splines are required for two very simple reasons:
1) Motors have an unfavorable (disadvantageous) relation of torque to number of revolutions.
2)Power is usually required to be transmitted along a shaft.
An accurate and fast calculation method is developed to determine the value of a trigonometric function if the value of another trigonometric function is given. Some examples of conversion procedures for well-known functions in gear geometry are presented, with data for accuracy and computing time. For the development of such procedures the complete text of a computer program is included.