A few months ago at the AGMA management seminar, I was surprised by the feverish note taking that went on at a presentation on marketing. The sight reminded me that while many of us in the gear industry are good engineers, designers, and mangers, we are often not as familiar - or comfortable - with less concrete concepts, such as marketing.
Shot peening is widely recognized as a prove, cost-effective process to enhance the fatigue characteristics of metal parts and eliminate the problems of stress corrosion cracking. Additional benefits accrue in the areas of forming and texturizing. Though shot peening is widely used today, the means of specifying process parameters and controlling documents for process control are not widely understood. Questions regarding shot size, intensity, and blueprint specification to assure a high quality and repeatable shot peening process are continually asked by many design and materials engineers.
This article should answer many of the questions frequently asked by engineering professionals and to further assist companies interested in establishing a general shot peening specification.
Metrology is a vital component of gear manufacturing. Recent changes in this area, due in large part to the advent of computers, are highlighted in this article by comparison with more traditional methods.
A simple, closed-form procedure is presented for designing minimum-weight spur and helical gearsets. The procedure includes methods for optimizing addendum modification for maximum pitting and wear resistance, bending strength, or scuffing resistance.
Dear Editor:
In Mr. Yefim Kotlyar's article "Reverse Engineering" in the July/August issue, I found an error in the formula used to calculate the ACL = Actual lead from the ASL = Assumed lead.
Question: When evaluating charts from a gear inspection machine, it is sometimes found that the full length of the profile traces vary, and that sometimes they are less than the length of active profile (above start of active profile-SAP) by up to 20%. This condition could be caused by a concentricity error between tooth grinding and shaping, or by unequal stock removal when grinding. (See Fig. 1.) Is it possible that some of the variation is coming from the inspection machine? How can variation from the inspection machine be reduced?