This paper deals with the residual stress depth profiles in case-carburized gears, their effects on the fatigue behavior as well as the enhancement of ISO/TS 6336-4 to include the consideration of tensile residual stresses in the tooth core area. For this purpose, an equation is also presented with which these tensile residual stresses can be estimated so that they can be used in the enhanced evaluation of TFF risk.
In this article, the focus is put on one technology, X-ray diffraction (XRD), and more specifically, residual stress measurement by way of XRD for both process development and quality control.
Highly loaded gears are usually casehardened to fulfill the high demands on
the load-carrying capacity. Several factors, such as material, heat treatment, or macro and micro geometry, can influence the load-carrying capacity. Furthermore, the residual stress condition also significantly
influences load-carrying capacity. The residual stress state results from heat treatment and can be further modified by manufacturing processes post heat treatment, e.g. grinding or shot peening.