Cost cutting. It's the aerobics of the 90s for businesses large and small. More than just the latest buzzword or 90-second flash-in-the-panacea, it's a survival technique. Companies that aren't trimming the fat now may not be around in five years to regret that they didn't.
At the next meeting of your association's marketing committee, notice what happens. The rate of taking notes increases dramatically when the market analysis and international trade trends reports begin. Even with the handouts to match the overhead projections of numbers, the audience's pace is furious. This is vital, apparently hard-to-come-by information, and no one wants to miss out. Almost all of the information comes from one source, yet the data offered is only one small dip from an enormous treasure chest - the U.S. Government.
Of timing is crucial in the successful implementation of good ideas, then now is the time to reinstate a good idea that fell into disfavor in the mid-1980s. Now is the time to include the investment tax credit as part of whatever inevitable tax structure tinkering is going to take place during this election year.
It's every gear manufacturer's nightmare. Your company had been named as a defendant in a product liability suit - one involving serious injuries and death. You're facing endless court appearances, monumental legal fees, and, possibly, seven figure settlements our of your coffers. The very existence of your business could be on the line. The question is, how do you prevent this nightmare from becoming a painful reality.
The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum.
A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form:
Integrated gear/shaft/bearing systems
Effects of rim thickness on gear tooth stresses
Resonant response
A few months ago at the AGMA management seminar, I was surprised by the feverish note taking that went on at a presentation on marketing. The sight reminded me that while many of us in the gear industry are good engineers, designers, and mangers, we are often not as familiar - or comfortable - with less concrete concepts, such as marketing.
Dear Editor:
In Mr. Yefim Kotlyar's article "Reverse Engineering" in the July/August issue, I found an error in the formula used to calculate the ACL = Actual lead from the ASL = Assumed lead.
October is the time. Detroit is the place. AGMA Gear Expo '91 is the event. Cobo Center in downtown Detroit is where you will want to be in October if you have any interest in gear products, manufacturing, or research.