Over the past several months, many gear manufacturers and industry suppliers have been telling me how busy they
are. Their backlogs are the largest in history, their sales the highest they’ve been in many years. They’ve invested in new capabilities, new machinery and people.
In the wide, wide world of moving
parts, the gears required for the big
jobs—the really big jobs—often experience big problems. Proper lubrication of these gears is paramount in industrial applications such as wind turbines, kilns, sugar mills, crushers, heavy construction, offshore drilling rigs, mining and quarrying.
Bringing new or improved products to
market sooner has long been proven profitable for companies. One way to help shorten the time-to-market is to accelerate validation testing. That is, shorten the test time required to validate a new or improved product.
The connection between transmission error, noise and vibration during operation has long been established.
Calculation methods have been developed to describe the influence so that it is possible to evaluate the relative effect
of applying a specific modification at the design stage. These calculations enable the designer to minimize the excitation from the gear pair engagement at a specific load. This paper explains the theory behind transmission error and the reasoning behind the method of applying the modifications through mapping surface profiles and determining load sharing.
At Muncie Power, the objective of noise and vibration testing is to develop
effective ways to eliminate power
take-off (PTO) gear rattle, with specific emphasis on PTO products. The
type of sound of largest concern in this
industry is tonal.
The Forest City Gear booth at Gear Expo featured a wide variety of gears utilized in medical equipment, Indy cars, fishing reels, even the recently launched Mars Rover. Scattered among Forest City’s products in Cincinnati were some unique gear sculptures created by an artist that finds more inspiration from the pages of industrial magazines than art galleries.