Next year will be the 500th anniversary of Christopher Columbus' famous "discovery" of America. Poor Columbus has fallen on hard times of late, what with revisionist historians smacking their lips over his more notable failures and reminding us that American natives have a vastly different point of view on this Great American Success Story. But before we relegate the Great Navigator to the scrap heap of trashed-over heros, let's take one last look at some of the positive lessons to be learned from the Columbus experience - ones that could be instructive to our current situation in the American gear industry.
Following is the second part of an article begun in our last issue. The first part covered basic shot peening theory, shot peening controls, and considerations that should go into developing a shot peening specification. Part II covers optional peening methods and the relationship of shot peening specifications to the drawings.
The design of any gearing system is a difficult, multifaceted process. When the system includes bevel gearing, the process is further complicated by the complex nature of the bevel gears themselves. In most cases, the design is based on an evaluation of the ratio required for the gear set, the overall envelope geometry, and the calculation of bending and contact stresses for the gear set to determine its load capacity. There are, however, a great many other parameters which must be addressed if the resultant gear system is to be truly optimum.
A considerable body of data related to the optimal design of bevel gears has been developed by the aerospace gear design community in general and by the helicopter community in particular. This article provides a summary of just a few design guidelines based on these data in an effort to provide some guidance in the design of bevel gearing so that maximum capacity may be obtained. The following factors, which may not normally be considered in the usual design practice, are presented and discussed in outline form:
Integrated gear/shaft/bearing systems
Effects of rim thickness on gear tooth stresses
Resonant response
Precision gears play a vital role in today's economy. Through their application, automobile transmissions are more compact and efficient, ships sail faster, and diesel locomotives haul more freight. Today great emphasis is being placed upon the reduction of noise in all gear applications and, to be quiet, gears must be accurate.
Question: Could you explain what is meant by "horological gearing"? I never heard of this before, although I understand it has something to do with watches. Could you also explain the meaning of a "going gear train"?
It's every gear manufacturer's nightmare. Your company had been named as a defendant in a product liability suit - one involving serious injuries and death. You're facing endless court appearances, monumental legal fees, and, possibly, seven figure settlements our of your coffers. The very existence of your business could be on the line. The question is, how do you prevent this nightmare from becoming a painful reality.