May/June 1986

Download PDF

Publisher's Page

Notes From the Editor's Desk

This issue of Gear Technology, The Journal of Gear Manufacturing, marks the end of our second year of publication. As we approach our third year, it is time to review our statement of purpose. Gear Technology's primary goal was and is to be a reference source and a forum for the American Gear industry, and to advance gear technology throughout the world.

Technical Articles

Generating and Checking Involute Gear Teeth

It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.

Selection of Material and Compatible Heat Treatments for Gearing

The manufacturing process to produce a gear essentially consist of: material selection, blank preshaping, tooth shaping, heat treatment, and final shaping. Only by carefully integrating of the various operations into a complete manufacturing system can an optimum gear be obtained. The final application of the gear will determine what strength characteristics will be required which subsequently determine the material and heat treatments.

Identification of Gear Noise with Single Flank Composite Measurement

Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.

Feature Articles

Viewpoint

Sub: 'Finding Tooth Ratios' article published in Nov/Dec 1985 issue Let us congratulate you and Orthwein, W.C. for publishing this superb article in Gear Technology Journal. We liked the article very much and wish to impliment it in our regular practice.

A Wheel Selection Technique for Form Gear Grinding

Until recently, form gear grinding was conducted almost exclusively with dressable, conventional abrasive grinding wheels. In recent years, preformed, plated Cubic Boron Nitride (CBN) wheels have been introduced to this operation and a considerable amount of literature has been published that claim that conventional grinding wheels will be completely replaced in the future. The superior machining properties of the CBN wheel are not disputed in this paper.