In the hypercompetitive race to increase automobile efficiency,
Metaldyne has been developing its balance shaft module line with Victrex
PEEK polymer in place of metal gears.
The collaborative product development
resulted in significant reductions in
inertia, weight and power consumption,
as well as improvement in noise, vibration and harshness (NVH) performance.
The powder metal (P/M) process is making inroads in automotive transmission applications due to substantially lower costs of P/M-steel components for high-volume production, as compared to wrought or forged steel parts. Although P/M gears are increasingly used in powered hand tools, gear pumps and as accessory components in automotive transmissions, P/M-steel gears are currently in
limited use in vehicle transmission applications. The primary objective of this project was to develop high-strength P/M-steel gears with bending fatigue, impact resistance and pitting fatigue performance
equivalent to current wrought steel gears.
Involute spline couplings are used to transmit torque from a shaft to a gear hub or other rotating component.
External gear teeth on the shaft engage an equal number of internal teeth in the hub. Because multiple teeth engage
simultaneously, they can transmit much larger torques than a simple key and keyway assembly. However, manufacturing
variations affect the clearance between each pair of mating teeth, resulting in only partial engagement.
Micropitting has become a major concern in certain classes of industrial gear applications, especially wind power and other relatively highly loaded, somewhat slow-speed applications, where carburized gears are used to facilitate maximum load capacity in a compact package. While by itself the appearance of micropitting does not generally cause
much perturbation in the overall operation of a gear system, the ultimate
consequences of a micropitting failure
can, and frequently are, much more
catastrophic.
Who knew what a few hundred bacteria could do with a little cooperation? Andrey Sokolov of Princeton University, Igor Aronson from the Argonne National Laboratory and Bartosz Grzybowski and Mario Apodaca from Northwestern University found out after placing microgears (380 microns long with
slanted spokes) in a solution with the common aerobic bacteria Bacillus subtilis. The scientists observed that the bacteria appeared to swim randomly but occasionally collided with the
spokes of the gears and turned them.
Stringent NVH requirements, higher
loads and the trend towards miniaturization to save weight and space are forcing transmission gear designers to increasingly tighten the surface finish, bore size and bore-to-face perpendicularity
tolerances on the bores of transmission
gears.
Capitalizing on a burgeoning new
technology where gears are of great import, the gear community gathered en masse at the American Wind Energy
Association’s Windpower Expo 2010.