Over the past few months I've talked with several different gear manufacturers who are in the process
of upgrading their gear making equipment
with modern CNC machine tools. Each of these manufacturers has come to the realization that in order to stay competitive, he needs to streamline operations and become more
efficient...
So there is little chance that they need the same software to assist with their work. Gone are the days when companies wrote their own code and process engineers thumbed the same tattered reference book.
There are varying opinions as to what constitutes innovation, but in our industry and in the engineering world as a whole, we typically think of innovation as being the use of technologies different from those we use at the moment to do things better, faster and cheaper.
The efficiency of a gearbox is the output energy divided by the input energy. It depends on a variety of factors. If the complete gearbox assembly in its operating environment is observed, then the following efficiency influencing factors
have to be considered
The focus of the following presentation is two-fold: 1) on tests of new geometric variants; and 2) on to-date, non-investigated operating (environmental) conditions. By variation of non-investigated eometric parameters and operation conditions the understanding of micropitting formation is improved. Thereby it is essential to ensure existent calculation methods and match them to results of the comparison between large gearbox tests and standard gearbox test runs to allow a safe forecast of wear due to micropitting in the future.
The hobbing and generation grinding production processes are complex due to tool geometry and kinematics. Expert knowledge and extensive testing are required for a clear attribution of cause to work piece deviations. A newly developed software tool now makes it possible to simulate the cutting procedure of the tool and superimpose systematic deviations on it. The performance of the simulation
software is illustrated here with practical examples. The new simulation tool allows the user to accurately predict the effect of errors. With this knowledge, the user can design and operate optimal, robust gearing processes.
Arguably the city of Chicago’s most compelling, dynamic period — early 1930s -1960 — is dramatically evoked in Thomas Dyja’s 2013 book, THE THIRD COAST — When Chicago Built the American Dream.
In January of this year we at Gear Technology got hip to the fact-in un-hip, belated fashion - that we needed a Blog Site and someone to do the blogging. Lucky for us, we already had that someone right here - in plain sight. That someone was Charles D. Schultz, P.E.
Soon upon setting down in
this beautiful, former (43 B.C.)
Roman Colony that is now the City of Lyon, I was careening to my hotel, Mach I-plastered to the back seat of a sleek, shinyblack Mercedes taxi, when I realized I was staring at - zut
alors? - cornfields!
I must confess I sometimes find myself a bit dazed when discussing lubrication issues with either staff or vendors. The terminology seems to be all over the lot, with some terms having double meanings. Can you help cut through the confusion?