Lately, the use of asymmetric gears in automotive and other applications is an upcoming trend, though few applications
are known to have asymmetric teeth. However, an increased interest in asymmetric gears can be seen. Many companies have started to design and test such applications.
In many gear transmissions, tooth load on one flank is significantly higher and is applied for longer periods of time than on the opposite one; an asymmetric tooth shape should reflect this functional difference. The advantages of these gears allow us to improve the performance of the primary drive tooth flanks at the expense of the opposite coast flanks, which are unloaded or lightly loaded during a relatively short work period by drive flank contact and bending stress reduction. This article is about the microgeometry optimization of the spur asymmetric gears’ tooth flank profile based on the tooth bending and contact deflections.