The arrival of Gleason’s Hard Finishing Cell (HFC) in 2018 represented a paradigm shift in the way automotive transmission gears and gears for e-drives, could be produced in high volumes. Now, for the first time, 100 percent inspection of every gear, and every gear tooth was possible in-process, without impacting the high speeds at which these gears need to be hard finished. Identifying, and correcting for, conditions that create unacceptable noise behavior in these gears, on the fly, was finally a reality too.
From the outside, Gallmar Industries, nestled into an Oshkosh, WI, neighborhood, looks like any unassuming, medium-sized gear shop. Then take a plant tour with Gallmar’s VP of Operations Kenan Zolota—and prepare to be amazed. The facility stretches on like the Army’s warehouse at the end of Raiders of the Lost Ark, with everything from gear cutting to heat treat, gear grinding to inspection, all under one roof. Gallmar’s breadth of product line is in evidence too: defense-related transmission gears, 60-in. diameter internal gears for mining equipment, axle components for fire/ rescue trucks five feet in length, right down to a bin of brass ammunition casings that Zolota says are a special order.
As a community, we gear engineers collaborate and share ideas to progress our collective capability. Technology progresses based on our efforts, and we have seen solid advances in the performance of our products as they become quieter, cheaper, more efficient, and more power dense. The pages of this magazine (past and present editions) are filled with examples where talented engineers have dug deeper into a subject using a more precise approach to a particular area concerning gear performance. The implied belief is always that greater precision (complexity) in the calculations brings greater accuracy (alignment with reality).
New training programs and digital training technologies are closing the gap between shortages in skilled workers and an increasingly complex manufacturing environment. People are your most valuable asset, and investments in training pay enormous dividends downstream.
Training has quickly evolved in recognition of the new realities of the factory floor. The training tool kit has never been more diverse or effective. Training regimens today, at the best companies, are analogous to those of the most successful professional sports or Olympic teams. Instead of weight room, nutrition, and practice, workers use digital webinars, simulations, and classrooms. If modern training tools and techniques result in faster, higher, and stronger on the athletic field, they also produce faster, smarter, and better for companies seeking a competitive edge in the marketplace.
Speedy delivery of high quality, open die forgings, seamless and contoured rolled rings, and complex forged parts is essential to the growing wind energy sector
Specialty forgers can manufacture custom, high-quality, seamless rolled rings in a variety of materials and finishes in as little as eight weeks. Open die forgings and seamless rolled rings are essential components in the wind energy sector, contributing to the overall reliability and efficiency of turbines, generator systems, and transmission and distribution equipment.
Gear backlash refers to the clearance, or play, between the teeth of gears in a mechanical transmission system. Gear designers have strived to minimize gearing systems’ backlash due to the impact on precision, efficiency, noise, vibrations, wear, motion control, system complexity, and safety. Their significance varies depending on the applications, but designers need to carefully consider these factors when developing robotics systems to ensure they meet the desired performance and safety standards.
Gear Technology’s annual State-of-the-Gear-Industry survey polls gear manufacturers about the latest trends and opinions relating to the overall health of the gear industry. As in years past, the survey was conducted anonymously, with invitations sent by email to our subscribers, AGMA members, and others in the gear industry. Primarily, our responses come from North America, but they also include responses from around the world. Nearly 200 individuals responded to the survey.
Extremely accurate and impervious to contamination, hydraulic clamping is ideal for e-drive and other applications where producing high-precision gears is paramount.
In a world where hard finishing operations are now commonplace and high precision is the rule rather than the exception, many gear manufacturers are taking a closer look at workholding. Manufacturers have come to realize that workholding, long under-appreciated and over-looked, can play an important role in squeezing precious seconds out of idle time, help reduce costly runout on precision gear teeth to just a few microns, and cut the high cost of maintenance and repair.
Gear tooth profile grinding, also known as form grinding, is a finishing method used in gear manufacturing. It involves the use of vitrified bonded grinding wheels to modify or correct the profile of gear teeth, often after heat treatment. The grinding wheel runs between two opposing teeth, grinding both surfaces at the same time.
Manufacturers have a relatively new option that offers several key advantages—gear skiving on machining centers. Gear skiving on a mill-turn machining center with fully synchronous spindles is highly efficient, fast, and accurate. In some cases when producing small and medium-sized volumes, gear skiving will gradually replace established gear-cutting processes.