Just like most of the gear industry, we're extremely busy here at Gear Technology. While many of you are working hard to produce more gears, we're doing the same with magazines.
When Belgium-based Hansen Transmissions was under the ownership of Invensys plc in the late 1990s, the parent company was dropping not-so-subtle hints that the industrial gearbox manufacturer was not part of its long-term plans. Yet Hansen’s CEO Ivan Brems never dreamed that, less than a decade later, he would be working for an Indian company.
Google “lean manufacturing” and you will find a virtually endless font of information regarding formal lean implementation. You’ll see definitions for Japanese words such as kaizen, gemba, muda, mura, kanban, and so on. You will also find other variations or iterations of lean, e.g.: Six Sigma, Lean Sigma, TPS (Toyota Production System), TOC (Theory of Constraints), JIT (Just in Time), and others.
While universally known as a Japanese “invention” that was popularized by Toyota, lean in fact traces its roots to the work of
post-World War II American occupation forces in Japan.
In most transmission systems, one of the main power loss sources is the loaded gear mesh. In this article, the influences of gear geometry parameters on gear efficiency, load capacity, and excitation are shown.
With the right selection of nonstandard center distance and tool shifting, it may be possible to use standard tools to improve the gear set capacity with a considerable reduction in cost when compared to the use of special tools.
On May 20, the city of Pittsburgh celebrated the 130th anniversary of the Duquesne Incline, a funicular railway that allows passengers to travel via cable car to an observation area and catch a panoromic view of the city and—most importantly—get a bird’s eye glimpse of the gear teeth
in action.
Over many years of being in the machine tool business, it has been interesting to observe the way we suppliers are forced to quote and sell machine tools to many large companies.