A gear design optimization approach applied to reduce tooth contact temperature and noise excitation of a high-speed spur gear pair running without lubricant. Optimum gear design search was done using the Run Many Cases software program. Thirty-one of over 480,000 possible gear designs were considered, based on low contact temperature and low transmission error. The best gear design was selected considering its manufacturability.
The research presented here is part of an ongoing (six years to date) project of the Cluster of Excellence (CoE). CoE is a faculty-wide group of researchers from RWTH Aachen University in Aachen (North Rhine-Westphalia). This presentation is a result of the group’s examination of "integrative production technology for high-wage countries," in which a shaft for a dual-clutch gearbox is developed.
It’s a brave, new hardware-software world out there. Players in the worldwide gear industry who don’t have plenty of both run the risk of becoming irrelevant—sooner than later.
The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published
last December. It is the first and only official, international calculation method established for dealing with
micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments
about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.
The gear tooth fillet is an area of maximum bending stress concentration. However, its profile is typically less specified in the gear drawing and hardly controlled during gear inspection in comparison with the gear tooth flanks. This paper presents a fillet profile optimization technique for gears with symmetric and asymmetric teeth based on FEA and a random search method. It allows achieving substantial bending stress
reduction in comparison with traditionally designed gears. This bending stress reduction can be traded for higher load capacity, longer lifetime, lower noise and vibration and cost reduction.
Many engineers and purchasing agents think it is more expensive to custom design a component or assembly these
days when often customization can save on total costs.
Due to its economical efficiency, the gear shaving process is a widely used process for soft finishing of gears. A simulation technique allows optimization of the process.