Indexable carbide insert (ICI) cutting
tools continue to play a pivotal role
in gear manufacturing. By offering higher cutting speeds, reduced cycle times, enhanced coatings, custom configurations and a diverse range of sizes and capabilities, ICI tools have
proven invaluable for finishing and pre-grind applications. They continue to expand their unique capabilities and worth in the cutting tool market.
Indexable carbide insert cutting tools for gears are nothing new. But big gears have recently become a very big business. The result is that there's been a renewed interest in carbide insert cutting tools.
This article examines the dry hobbing capabilities of two cutting tool materials—powder metallurgical high-speed steel (PM-HSS) and cemented carbide. Cutting trials were carried out to analyze applicable cutting parameters and possible tool lives as well as the process reliability. To consider the influences of the machinability of different workpiece materials, a case hardening steel and
a tempered steel were examined.
Hobs, broaches, shaper cutters,
shaver cutters, milling cutters,
and bevel cutters used in the
manufacture of gears are commonly
made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.
To meet the future goals of higher productivity and lower production costs, the cutting speeds and feeds in modern gear hobbing applications have to increase further. In several cases, coated carbide tools have replaced the commonly used high speed steel (HSS) tools.
In order to increase the load carrying capacity of hardened gears, the distortion of gear teeth caused by quenching must be removed by precision cutting (skiving) and/or grinding. In the case of large gears with large modules, skiving by a carbide hob is more economical than grinding when the highest accuracy is not required.