Mechanical power loss in gears is generated through sliding and rolling of the contact resulting in frictional work and elastic hysteresis generation of heat. This action is both a parasitic loss of energy from the drivetrain and a source of engineering costs to control system temperature to avoid heat-related failures of the gearbox components. Therefore, from both a cost and durability standpoint it is of great interest to minimize the frictional losses at the gear tooth contact interface.
In the wind power industry, the reliability of powertrain components plays a major role. Especially in multi-megawatt offshore applications, an unplanned replacement of drivetrain
components can lead to extremely high costs. Hence, the expectation of wind farm operators is to forecast the system reliability. Under the leadership of the VDMA (Mechanical Engineering Industry Association), the standardization paper 23904 "Reliability Assessment for Wind Turbines" was published in October 2019.