In principal, the design of internal helical gear teeth is the same as that for external helical gears. Any of the basic rack forms used for external helical gears may be applied to internal helical gears. The internal gear drive, however, has several limitations; not only all those which apply to external gears, but also several others which are peculiar to internal gears. As with external gears, in order to secure effective tooth action, interferences must be avoided. The possible interferences on an internal gear drive are as follows:
1. Involute interference. To avoid this, all of the working profile of the internal tooth must be of involute form.
Gears are toothed wheels used primarily to transmit motion and power between rotating shafts. Gearing is an assembly of two or more gears. The most durable of all mechanical drives, gearing can transmit high power at efficiencies approaching 0.99 and with long service life. As precision machine elements gears must be designed.
In our last issue, the labels on the drawings illustrating "Involutometry" by Harlan Van Gerpan and C. Kent Reece were inadvertently omitted. For your convenience we have reproduced the corrected illustrations here. We regret any inconvenience this may have caused our readers.
Involute Curve Fundamentals. Over the years many different curves have been considered for the profile of a gear tooth. Today nearly every gear tooth uses as involute profile. The involute curve may be described as the curve generated by the end of a string that is unwrapped from a cylinder. (See Fig. 1) The circumference of the cylinder is called the base circle.
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.
In designing involute gear teeth, it is essential that the fundamental
properties of the involute curve be clearly understood. A review of "the Fundamental Laws of the Involute Curve"
found in last issue will help in this respect. It has previously been shown that the involute curve has its origin at the base circle. Its length, however, may be anything from zero at the origin or starting point on to infinity. The problem, therefore, in designing gear teeth, is to select that portion of the involute, which will best meet all requirements.
The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.
Experience has proven that the involute provides the most satisfactory profile for spur and helical gear teeth, and fulfills the requirements for transmitting smooth, uniform angular
motion.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces
of the gear teeth. Its purpose is to correct errors in index, helical angle, tooth profile and eccentricity.