I have outsourced gear macrogeometry due to lack of resources. Now I received the output from them and one of the gears is with —0.8× module correction factor for m = 1.8 mm gear. Since bending root stress and specific slide is at par with specification, but negative correction factor —0.8× module — is quite high — how will it influence NVH behavior/transmission error? SAP and TIF are very close to
0.05 mm; how will that influence the manufacturing/cost?
We are currently experiencing wear on the bull gear on our
converter at the steel plant.
We want to be able to draw the original gear profile to compare
this with the worn tooth before we decide on the next steps.
I have attempted this, but there is a correction factor given and I
am unsure how to apply this. Could someone give advice on this?
Please find attached the PDF’s for the bull gear and the pinion gear.
They are old drawings! The wear is on the wheel.
The question is quite broad, as there
are different methods for setting various types of gears and complexity of
gear assemblies, but all gears have a few things in common.
I have heard that X-ray diffraction does not tell the whole story and that I should really run a fatigue test. I understand this may be the best way, but is there another method that gives a high degree of confidence in the residual stress measurement?
Gears with a diametral pitch 20 and
greater, or a module 1.25 millimeters
and lower, are called fine-pitch or low-module gears. The design of these gears has its own specifics.
I must confess I sometimes find myself a bit dazed when discussing lubrication issues with either staff or vendors. The terminology seems to be all over the lot, with some terms having double meanings. Can you help cut through the confusion?
For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?
A reader asks: While I have read a reasonable amount of the literature on the pros and cons of anti-wear and anti-scuff additives, I find that the more I read, the more confused I become. I could use some clarity in my life.