Have you ever stood on a beach at the edge of the water and felt the grains of sand dissolve from under your feet as the water recedes? No matter how hard you plant your feet or grip your toes, you can’t hold on to the sand. It just flows away right from under you.
In many ways that sand is like the knowledge and experience of our graying manufacturing workforce. It seems inevitable that much of that knowledge is being washed away.
In this special section, our editors have gathered recent news and information related to the heat treatment of gears. Here you’ll find a comprehensive assortment of news and upcoming events that will help you understand the various heat treatment processes available for gears and choose the best option for your projects, whether you heat treat in-house or send your gears to a commercial heat treating provider.
The process of forging metal into shapes possesses
a surprisingly long and storied history.
For example, the method of hot rolling can trace its protracted existence all the way back to an enigmatic Italian polymath named Leonardo da Vinci (you may have heard of him), who reportedly invented the rolling mill one lazy day in the 1400s.
NASA is now 3-D-printing spare parts up at the ISS (International Space Station). And in zero-gravity environments. And some of these parts are small gears and actuators, for starters. Every indication is that the list of power transmission-type parts to be converted will soon grow.
One process for hard finishing gears is generating gear grinding. Due to its high process efficiency, generating gear grinding has replaced other grinding processes such as profile grinding in batch production of small- and middle-sized gears. Yet despite the wide industrial application of generating gear grinding, the process design is based on experience along with time- and cost-intensive trials. The science-based analysis of generating gear grinding demands a high amount of time and effort, and only a few published scientific analyses exist. In this report a thermo-mechanical process model that describes influences on the surface zone in generating gear grinding is introduced.
This paper proposes a new method — using neural oscillators — for filtering out background vibration noise in meshing plastic gear pairs in the detection of signs of gear failure. In this paper these unnecessary frequency components are eliminated with a feed-forward control system in which the neural oscillator’s synchronization property works. Each neural oscillator is designed to tune the natural frequency to a particular one of the components.
The geometry of the bevel gear is quite complicated to describe mathematically, and much of the overall surface topology of the tooth flank is dependent on the machine settings and cutting method employed. AGMA 929-A06 — Calculation of Bevel Gear Top Land and Guidance on Cutter Edge Radius — lays out a practical approach for predicting the approximate top-land thicknesses at certain points of interest — regardless of the exact machine settings that will generate the tooth form. The points of interest that AGMA 929-A06 address consist of toe, mean, heel, and point of involute lengthwise curvature. The following method expands upon the concepts described in AGMA 929-A06 to allow the user to calculate not only the top-land thickness, but the more general case as well, i.e. — normal tooth thickness anywhere along the face and profile of the bevel gear tooth. This method does not rely on any additional machine settings; only basic geometry of the cutter, blank, and teeth are required to calculate fairly accurate tooth thicknesses. The tooth thicknesses are then transformed into a point cloud describing both the convex and concave flanks in a global, Cartesian coordinate system. These points can be utilized in any modern computer-aided design software package to assist in the generation of a 3D solid model; all pertinent tooth macrogeometry can be closely simulated using this technique. A case study will be presented evaluating the accuracy of the point cloud data compared to a physical part.
It was late November in Northern Italy, and everything was coming up vinegar oil and high-performance cars for Cory Sanderson and the 11 other members of his Yankee armada.
This issue, GT Extras brings you "Heat Treat and Induction Hardening of Industrial Gears," a treasure trove of heat treating related technical articles and a call for help in preparation for AGMA's 100th anniversary.
I have heard that X-ray diffraction does not tell the whole story and that I should really run a fatigue test. I understand this may be the best way, but is there another method that gives a high degree of confidence in the residual stress measurement?