This paper presents how low pressure carburizing and high pressure gas quenching processes are successfully applied on internal ring gears for a six-speed automatic transmission. The specific challenge in the heat treat process was to reduce distortion in such a way that subsequent machining operations are entirely eliminated.
Often, the required hardness qualities of parts manufactured from steel can only be obtained through suitable heat
treatment. In transmission manufacturing, the case hardening process is commonly used to produce parts with a hard and wear-resistant surface and an adequate toughness in the core. A tremendous potential for rationalization, which is only
partially used, becomes available if the treatment time of the case hardening process is reduced. Low pressure carburizing (LPC) offers a reduction of treatment time in comparison to conventional gas carburizing because of the high carbon
mass flow inherent to the process (Ref. 1).
This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory.
Open any heat treating journal today and you’re certain to find multiple references (articles, technical papers and/or advertisements) promoting low-pressure carburizing (LPC). The uninformed might breeze by these references thinking it’s the next flash-in-the-pan, but unlike in the past, this time the process has legs.