It has long been known that the skiving
process for machining internal gears is
multiple times faster than shaping, and
more flexible than broaching, due to skiving's continuous chip removal capability. However, skiving has always presented a challenge to machines and tools. With the relatively low dynamic stiffness in the gear trains of mechanical machines, as well as the fast wear of uncoated cutters, skiving of cylindrical gears never achieved acceptance in shaping or hobbing, until recently.
In this paper, the potential for geometrical cutting simulations - via penetration calculation to analyze and predict tool wear as well as to prolong tool life - is shown by means of gear finish hobbing. Typical profile angle deviations that occur with increasing
tool wear are discussed. Finally, an approach is presented here to attain improved profile accuracy over the whole tool life of the finishing hob.
Natural resources—minerals, coal, oil, agricultural products, etc.—are the
blessings that Mother Earth confers upon the nations of the world. But it takes unnaturally large gears to extract them.