This paper proposes a new method — using neural oscillators — for filtering out background vibration noise in meshing plastic gear pairs in the detection of signs of gear failure. In this paper these unnecessary frequency components are eliminated with a feed-forward control system in which the neural oscillator’s synchronization property works. Each neural oscillator is designed to tune the natural frequency to a particular one of the components.
This paper presents an original method for computing the loaded mechanical behavior of fiber reinforced polymer gears. Although thermoplastic gears are unsuitable for application transmitting
high torque, adding fibers can significantly increase their performance. The particular case of
polyamide 6 + 30% glass fibers is studied in this paper.
The turbines are still spinning.
They’re spinning on large wind farms
in the Great Plains, offshore in the
Atlantic and even underwater where
strong tidal currents offer new energy
solutions. These turbines spin regularly
while politicians and policy makers—
tied up in discussions on tax incentives, economic recovery and a lot of finger pointing—sit idle. Much like the auto and aerospace industries of years past, renewable energy is coping with its own set of growing pains. Analysts still feel confident that clean energy will play a significant role in the future of manufacturing—it’s just not going to play the role envisioned four to five
years ago.
This paper seeks to compare the data generated from test rig shaft encoders and torque transducers when using steel-steel, steel-plastic and plastic-plastic gear combinations in order to understand the differences in performance of steel and plastic gears.