The capabilities and limitations of manufacturing gears by conventional means are well-known and thoroughly documented. In the search to enhance or otherwise improve the gear-making process, manufacturing methods have extended beyond chip-cutting - hobbing, broaching, shaping, shaving, grinding, etc. and their inherent limitations based on cutting selection and speed, feed rates, chip thickness per tooth, cutting pressure, cutter deflection, chatter, surface finish, material hardness, machine rigidity, tooling, setup and other items.
Gears are designed to be manufactured, processed and used without failure throughout the design life of the gear. One of INFAC's objectives (*see p.24) is to help manufacture of gears to optimize performance and life. One way to achieve this is to identify failure mechanisms and then devise strategies to overcome them by modifying the manufacturing parameters.
Question: We are contemplating purchasing a hobbing machine with dry hobbing capabilities. What do we need to know about the special system requirements for this technology?
In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.
Question: When we purchase our first CNC gear hobbing machine, what questions should we ask about the software? What do we need to know to correctly specify the system requirements?
Question: We are interested in purchasing our first gear hobbing machine. What questions should we ask the manufacturer, and what do we need to know in order to correctly specify the CNC hardware and software system requirements?
NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.
These days it's hard to get through breakfast without reading or hearing another story about how the computer is changing the way we live, sleep, eat, breathe, make things and do business. The message is that everything is computerized now, or, if it isn't, it will be by next Tuesday at the latest, Well, maybe.
Question: In the January/February issue of your magazine, we came across the term "electronic gearbox." We have seen this term used elsewhere as well. We understand that this EGB eliminates the change gear in the transmission line, but not how exactly this is done. Could you explain in more detail?