Carburized helical gears with high retained austenite were tested for surface contact fatigue. The retained austenite before test was 60% and was associated with low hardness near the case's surface. However, the tested gears showed good pitting resistance, with fatigue strength greater than 1,380 MPa.
Using the DANTE software, a finite element simulation was developed and executed to study the response of a carburized 5120 steel helical gear to quenching in molten salt. The computer simulation included heat-up, carburization, transfer and immersion in a molten salt bath, quenching, and air cooling. The results of the simulation included carbon distribution of phases, dimensional change, hardness, and residual stress throughout the process. The predicted results were compared against measured results for hardness, dimensions and residual stress. The excellent agreement between predictions and measured values for this carburized 5120 steel gear provides a basis for assessing the various process parameters and their respective importance in the characteristics of not only these heat-treated parts, but of other compositions and shapes.
When hardened steel components are ground, there is always the possibility of damage to the steel in the form of residual stress or microstructural changes. Methods for detecting this sort of damage have always had one or more drawbacks, such as cost, time, complexity, subjectivity, or the use of hazardous chemicals.
Gear pitting is one of the primary failure modes of automotive transmission gear sets. Over the past years, many alternatives have been intended to improve their gear surface durability. However, due to the nature of new process development, it takes a length of time and joint efforts between the development team and suppliers to investigate and verify each new approach.
There are numerous engineering evaluations required to design gear sets for optimum performance with regard to torque capacity, noise, size and cost. How much cost savings and added gear performance is available through optimization? Cost savings of 10% to 30% and 100% added capacity are not unusual. The contrast is more pronounced if the original design was prone to failure and not fit for function.
The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.
Plastics as gear materials represent an interesting development for gearing because they offer high strength-to-weight ratios, ease of manufacture and excellent tribological properties (Refs. 1-7). In particular, there is a sound prospect that plastic gears can be applied for power transmission of up to 10 kW (Ref. 6).
Effective gear designs balance strength, durability, reliability, size, weight, and cost. Even effective designs, however, can have the possibility of gear cracks due to fatigue. In addition, truly robust designs consider not only crack initiation, but also crack propagation trajectories. As an example, crack trajectories that propagate through the gear tooth are the preferred mode of failure compared to propagation through the gear rim. Rim failure will lead to catastrophic events and should be avoided. Analysis tools that predict crack propagation paths can be a valuable aid to the designer to prevent such catastrophic failures.
A very important parameter when designing a gear pair is the maximum surface contact stress that exists between two gear teeth in mesh, as it affects surface fatigue (namely, pitting and wear) along with gear mesh losses. A lot of attention has been targeted to the determination of the maximum contact stress between gear teeth in mesh, resulting in many "different" formulas. Moreover, each of those formulas is applicable to a particular class of gears (e.g., hypoid, worm, spiroid, spiral bevel, or cylindrical - spur and helical). More recently, FEM (the finite element method) has been introduced to evaluate the contact stress between gear teeth. Presented below is a single methodology for evaluating the maximum contact stress that exists between gear teeth in mesh. The approach is independent of the gear tooth geometry (involute or cycloid) and valid for any gear type (i.e., hypoid, worm, spiroid, bevel and cylindrical).