Advancements in machining and assembly techniques of thermoplastic gearing along with new design data has lead to increased useage of polymeric materials. information on state of the art methods in fabrication of plastic gearing is presented and the importance
of a proper backlash allowance at installation is discussed. Under controlled conditions, cast nylon gears show 8-14 dBA. lower noise level than three other gear materials tested.
The use of plastic gearing is increasing steadily in new products.
This is due in part to the availability of recent design data. Fatigue
stress of plastic gears as a function of diametral pitch, pressure angle,
pitch line velocity, lubrication and life cycles are described based
on test information. Design procedures for plastic gears are presented.
Austempering heat treatments
(austenitizing followed by rapid cooling
to the tempering temperature) have been
applied to nodular irons on an experimental basis for a number of years, but commercial interest in the process has
only recently come to the surface.
This paper addresses Austempered Ductile Iron (ADI) as an emerging Itechnology and defines its challenge by describing the state-of-the-art of incumbent materials. The writing is more philosophical in nature than technical and is presented to
establish a perspective.
With the publishing of various ISO draft standards relating to gear rating procedures, there has been much discussion in technical papers concerning the various load modification factors. One of the most basic of parameters affecting the
rating of gears, namely the endurance limit for either contact or bending stress, has not, however, attracted a great deal of attention.
One of the major problems of plastic gear design is the knowledge of their running temperature. Of special interest is the bulk temperature of the tooth to predict the fatigue life, and the peak temperature on the surface of the tooth to avert surface failure. This paper presents the results of an experimental method that uses an infrared radiometer to measure the temperature variation along the profile of a plastic gear tooth in operation.
Measurements are made on 5.08, 3.17, 2.54, 2.12 mm module hob cut gears made from nylon 6-6, acetal and UHMWPE (Ultra High Molecular Weight Polyethylene). All the tests are made on a four square testing rig with thermoplastic/steel gear pairs where the
plastic gear is the driver. Maximum temperature prediction curves obtained through statistical analysis of the results are presented and compared to data available from literature.
What was once recognized as the unique
genius of America is now slipping away
from us and, in many areas, is now seen as a "second rate" capability. Unless
action is taken now, this country
is in real danger of being unable to regain its supremacy in technological development and economic vigor. First Americans must understand the serious implications of the problem; and second, we must dedicate ourselves to national and local actions that will ensure a greater scientific and
technological literacy in America.