The objective of this work is to introduce a method for the calculation of the tooth root load carrying capacity for gears, under consideration of the influence of the defect size on the endurance fatigue strength of the tooth root. The theoretical basis of this method is presented in this paper as well as the validation in running tests of helical and beveloid gears with different material batches, regarding the size distribution of inclusions. The torque level for a 50 percent failure probability of the gears is evaluated on the test rig and then compared to the results of the simulation. The simulative method allows for a performance of the staircase method that is usually performed physically in the back-to-back tests for endurance strength, as the statistical influence of the material properties is considered in the calculation model. The comparison between simulation and tests shows a high level of accordance.
You get one shot to make a first impression. One opportunity to show your customers, vendors and suppliers that you provide a steady, reliable product that will generate repeat business. How do you make this happen? What tools and strategies are available to get gear materials (forgings, gear blanks, etc.) shipped faster and more efficiently in today's tech-heavy, fast-paced, manufacturing environment?
Gear designers face constant pressure to increase power density in their drivetrains. In the automotive industry, for example, typical engine torque has increased significantly over the last several decades. Meanwhile, the demands for greater fuel efficiency mean designers must accommodate these increased loads in a smaller, more lightweight package than ever before. In addition, electric and hybrid vehicles will feature fewer gears, with fewer transmission speeds, running at higher rpms, meaning the gears in those systems will have to endure life cycles far beyond what is typical with internal combustion engines.