The hobbing and generation grinding production processes are complex due to tool geometry and kinematics. Expert knowledge and extensive testing are required for a clear attribution of cause to work piece deviations. A newly developed software tool now makes it possible to simulate the cutting procedure of the tool and superimpose systematic deviations on it. The performance of the simulation
software is illustrated here with practical examples. The new simulation tool allows the user to accurately predict the effect of errors. With this knowledge, the user can design and operate optimal, robust gearing processes.
For maximum life in carburized and ground gearing, I have been advised that fully grinding a radius into the root gives maximum resistance against fatigue failures. Others have advised that a hobbed and unground radius root form is best. Which is best, and why?
The honing of gears - by definition
- facilitates ease of operation, low noise and smoother performance in a transmission. Honing also contributes to
reduced friction in the powertrain. Both the intense cutting (roughing process) as well as the functionally fine- finishing of transmission gears can be performed in one setup, on one machine.