Large, multi-segmented girth gears do not behave like the relatively compact, rigid, monolithic structures we typically envision when discussing gear manufacturing. Girth gears are very large, non-rigid structures that require special care during the machining of individual mating segments as well as the assembled gear blank itself.
This article presents an analysis of asymmetric tooth gears considering the effective contact ratio that is also affected by bending and contact tooth deflections. The goal is to find an optimal solution for high performance gear drives, which would combine high load capacity and efficiency, as well as low transmission error (which affects gear noise and vibration).