Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.
Gear Expo 99, AGMA's biennial showcase for the gear industry, has left the Rust Belt this year and landed in Music City U.S.A., Nashville, Tennessee. The event, with exhibitors from around the globe showing off the latest in gear manufacturing as well as metal working processes, will be held at the Nashville Convention Center, October 24-27, 1999. According to Kurt Medert, AGMA vice president and Gear Expo show manager, "In choosing Nashville, AGMA;s Trade Show Advisory Council found a city that is an excellent trade show site. It has the right mix of convention center, nearby hotels, and a clean downtown area with entertainment readily available for the exhibitors and visitors alike. Nashville is in the heart of southern industry, which we see as a focus of growth for the gear industry and its customers."
The efficient and reliable transmission of mechanical power continues, as always, to be a central area of concern and study in mechanical engineering. The transmission of power involves the interaction of forces which are transmitted by specially developed components. These components must, in turn, withstand the complex and powerful stresses developed by the forces involved. Gear teeth transmit loads through a complex process of positive sliding, rolling and negative sliding of the contacting surfaces. This contact is responsible for both the development of bending stresses at the root of the gear teeth and the contact stresses a the contacting flanks.
In his Handbook of Gear Design (Ref.1), Dudley states (or understates): "The best gear people around the world are now coming to realize that metallurgical quality is just as important as geometric quality." Geometric accuracy without metallurgical integrity in any highly stressed gear or shaft would only result in wasted effort for all concerned - the gear designer, the manufacturer, and the customer - as the component's life cycle would be prematurely cut short. A carburized automotive gear or shaft with the wrong surface hardness, case depth or core hardness may not even complete its basic warranty period before failing totally at considerable expense and loss of prestige for the producer and the customer. The unexpected early failure of a large industrial gear or shaft in a coal mine or mill could result in lost production and income while the machine is down since replacement components may not be readily available. Fortunately, this scenario is not common. Most reputable gear and shaft manufacturers around the world would never neglect the metallurgical quality of their products.
In the last section, we discussed gear inspection; the types of errors found by single and double flank composite and analytical tests; involute geometry; the involute cam and the causes and symptoms of profile errors. In this section, we go into tooth alignment and line of contact issues including lead, helix angles, pitch, pitchline runout, testing and errors in pitch and alignment.
It is very common for those working in the gear manufacturing industry to have only a limited understanding of the fundamental principals of involute helicoid gear metrology, the tendency being to leave the topic to specialists in the gear lab. It is well known that quiet, reliable gears can only be made using the information gleaned from proper gear metrology.
One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.
It should be obvious by now that gears are more than just mechanical components. We have brought you movies with gears and Shakespeare with gears, jewelry made out of gears and so on. Now we, the humble staff at Addendum, are proud to present gears in the world of music.
Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.