The American Society of Mechanical Engineers (ASME) announced at Gear Expo '95 that a national service for the calibration of involute artifacts is now available at the Department of Energy's Y-12 Plant in Oak Ridge, TN.
In recent years, gear inspection requirements have changed considerably, but inspection methods have barely kept pace. The gap is especially noticeable in bevel gears, whose geometry has always made testing them a complicated, expensive and time-consuming process. Present roll test methods for determining flank form and quality of gear sets are hardly applicable to bevel gears at all, and the time, expense and sophistication required for coordinate measurement has limited its use to gear development, with only sampling occurring during production.
The purpose of this article is to clarify some terms and methods used in measuring the size of gears. There is also an explanation given of the error induced and how to correct for it in certain cases when the measurement is made using pins instead of balls.
Question: We just received permission to purchase our first CNC gear inspection system. With capital approvals so hard to come by, especially for inspection equipment, I want to be sure to purchase a system I can count of for years to come. My past experience with purchasing CNC equipment has shown me that serviceability of the computer and the CNC controller portion of the system can be a problem in just a few years because of the obsolescence factor. What information do I need to look for when selecting a supplier to reduce the risk of obsolescence, as well as to reduce the long-term servicing costs in the computer and controls portion of the system?
The popular perception today is that technological advancement is an engine running almost out of control. New products and processes are developing faster than we can keep up with them, as anyone who has had a new computer system crash into obsolescence practically before it's out of the box can tell you. But that's not the case everywhere. Transmission technology, for example.
There are problems in dimensional measurement that should be simple to solve with standard measuring procedures, but aren't. In such cases, using accepted practices may result in errors of hundreds of microns without any warning that something is wrong.
Heat Treating - The evil twin of the gear processing family. Heat treating and post-heat treating corrective processes can run up to 50% or more of the total gear manufacturing cost, so it's easy to see why, in these days when "lean and mean" production is the rage, and every part of the manufacturing process is under intense scrutiny, some of the harshest light falls on heat treating.
This section will deal with the use of gear inspection for diagnostic purposes rather than quality determination. The proper evaluation of various characteristics in the data can be useful for the solution of quality problems. It is important to sort out whether the problem is coming from the machine, tooling and/or cutters, blanks, etc. An article by Robert Moderow in the May/June 1985 issue of Gear Technology is very useful for this purpose.
Quality gear inspection means doing the "right" inspections "right." A lot of time and money can be spent doing the wrong types of inspections related to function and doing them incorrectly. As we will discover later, such things as runout can creep into the manufacturing and inspection process and completely ruin any piece of data that is taken. this is one of the most important problems to control for quality inspection.