Q&A is your interactive gear forum. Send us your gear design, manufacturing, inspection or other related questions, and we'll put them before our panel of experts.
I'd like to share with you a vision of the future. It takes place in cyberspace, and it's coming soon to a computer near you. Whether you like it or not, and whether you're ready or not, the Internet is changing the way business is conducted.
An analysis of possibilities for the selection of tool geometry parameters was made in order to reduce tooth profile errors during the grinding of gears by different methods. The selection of parameters was based on the analysis of he grid diagram of a gear and a rack. Some formulas and graphs are presented for the selection of the pressure angle, module and addendum of the rack-tool. The results from the grinding experimental gears confirm the theoretical analysis.
Gear noise associated with tooth surface topography is a fundamental problem in many applications. Operations such as shaving, gear grinding and gear honing are usually used to finish the gear surface. Often, gears have to be treated by a combination of these operations, e.g. grinding and honing. This is because gear honing operations do not remove enough stock although they do create a surface lay favorable for quiet operation. See Fig. 1 for typical honing process characteristics. Gear grinding processes, on the other hand, do remove stock efficiently but create a noisy surface lay.
This is the fourth and final article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are those of the author as an individual. They do not represent the opinions of any organization of which he is a member.
the gear industry is awash in manufacturing technologies that promise to eliminate waste by producing gears in near-net shape, cut production and labor costs and permit gear designers greater freedom in materials. These methods can be broken down into the following categories: alternative ways to cut, alternative ways to form and new, exotic alternatives. Some are new, some are old and some are simply amazing.
High-speed machining using carbide has been used for some decades for milling and turning operations. The intermittent character of the gear cutting process has delayed the use of carbide tools in gear manufacturing. Carbide was found at first to be too brittle for interrupted cutting actions. In the meantime, however, a number of different carbide grades were developed. The first successful studies in carbide hobbing of cylindrical gears were completed during the mid-80s, but still did not lead to a breakthrough in the use of carbide cutting tools for gear production. Since the carbide was quite expensive and the tool life was too short, a TiN-coated, high-speed steel hob was more economical than an uncoated carbide hob.
For over 50 years, grinding has been an accepted method of choice for improving the quality of gears and other parts by correcting heat treat distortions. Gears with quality levels better than AGMA 10-11 or DIN 6-7 are hard finished, usually by grinding. Other applications for grinding include, but are not limited to, internal/external and spur/helical gear and spline forms, radius forms, threads and serrations, compressor rotors, gerotors, ball screw tracks, worms, linear ball tracks, rotary pistons, vane pump rotators, vane slots, and pump spindles.
Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.