Manufacturing involute gears using form grinding or form milling wheels are beneficial to hobs in some
special cases, such as small scale production and, the obvious, manufacture of internal gears. To
manufacture involute gears correctly the form wheel must be purpose-designed, and in this paper the
geometry of the form wheel is determined through inverse calculation. A mathematical model is presented
where it is possible to determine the machined gear tooth surface in three dimensions, manufactured by this tool, taking the finite number of cutting edges into account. The model is validated by comparing calculated results with the observed results of a gear manufactured by an indexable insert milling cutter.
I have outsourced gear macrogeometry due to lack of resources. Now I received the output from them and one of the gears is with —0.8× module correction factor for m = 1.8 mm gear. Since bending root stress and specific slide is at par with specification, but negative correction factor —0.8× module — is quite high — how will it influence NVH behavior/transmission error? SAP and TIF are very close to
0.05 mm; how will that influence the manufacturing/cost?
Cracks initiated at the surface of case-hardened gears may lead to typical life-limiting fatigue failure
modes such as pitting and tooth root breakage. Furthermore, the contact load on the flank surface
induces stresses in greater material depth that may lead to crack initiation below the surface if the
local material strength is exceeded. Over time the sub-surface crack propagation may lead to gear
failure referred to as “tooth flank fracture” (also referred to as “tooth flank breakage”). This paper explains the mechanism of this subsurface fatigue failure mode and its decisive influence factors, and presents an overview of a newly developed calculation model.