From tiny beginnings, the AGMA Gear Expo is growing into a fine, strapping show. This year's effort, Gear Expo '89, "The Cutting Edge," will be bigger and better than ever. What started as a few tabletop exhibits in Chicago four years ago has now grown to a full-size, international exhibition at the David Lawrence Convention Center in Pittsburgh. With over 160 exhibitors, including major gear manufacturers and suppliers from around the world, this year's show promises to be a great success as well.
In the lubrication and cooling of gear teeth a variety of oil jet lubrication schemes is sometimes used. A method commonly used is a low pressure, low velocity oil jet directed at the ingoing mesh of the gears, as was analyzed in Reference 1. Sometimes an oil jet is directed at the outgoing mesh at low pressures. It was shown in Reference 2 that the out-of-mesh lubrication method provides a minimal impingement depth and low cooling of the gears because of the short fling-off time and fling-off angle.(3) In References 4 and 5 it was shown that a radially directed oil jet near the out-of-mesh position with the right oil pressure was the method that provided the best impingement depth.
The first part of this article describes the analytical design method developed by the author to evaluate the load capacity of worm gears.
The second part gives a short description of the experimental program and testing resources being used at CETIM to check the basic assumptions of the analytical method; and to determine on gears and test wheels the surface pressure endurance limits of materials that can be used for worm gears.
The end of the article compares the results yielded by direct application of the method and test results.
AGMA's Gear Expo '89, "The Cutting Edge," opens at the David Lawrence Convention Center in Pittsburgh, PA, on Nov. 6 and runs through Nov. 8. This year's show is "the largest trade show ever conceived specifically for the gear industry," according to Rick Norment, AGMA's executive director. The show is 60% larger in terms of floor space than the 1987 show, and over 90%of the booths have been sold.
May 18-21. AGMA Annual Meeting, "The Changing World of Gears." Loews Ventana Canyon Resort, Tucson, AZ.
July 12-14, 1989. ASM international Conference on Carburizing. Sheraton Hotel & Conference Center, Lakewood, CO.
September 12-20, 1989. European Machine Tool Show, Hannover, West Germany.
How dynamic load affects the pitting fatigue life of external spur gears was predicted by using NASA computer program TELSGE. TELSGE was modified to include an improved gear tooth stiffness model, a stiffness-dynamic load iteration scheme and a pitting-fatigue-life prediction analysis for a gear mesh. The analysis used the NASA gear life model developed by Coy, methods of probability and statistics and gear tooth dynamic loads to predict life. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact.
In principal, the design of internal helical gear teeth is the same as that for external helical gears. Any of the basic rack forms used for external helical gears may be applied to internal helical gears. The internal gear drive, however, has several limitations; not only all those which apply to external gears, but also several others which are peculiar to internal gears. As with external gears, in order to secure effective tooth action, interferences must be avoided. The possible interferences on an internal gear drive are as follows:
1. Involute interference. To avoid this, all of the working profile of the internal tooth must be of involute form.
Gears are toothed wheels used primarily to transmit motion and power between rotating shafts. Gearing is an assembly of two or more gears. The most durable of all mechanical drives, gearing can transmit high power at efficiencies approaching 0.99 and with long service life. As precision machine elements gears must be designed.
These lines, interesting enough, are from the notebooks of an artist whose images are part of the basic iconography of Western culture. Even people who have never set foot in a museum and wouldn't know a painting by Corregio from a sculpture by Calder, recognize the Mona Lisa. But Leonardo da Vinci was much more than an artist. He was also a man of science who worked in anatomy, botany, cartography, geology, mathematics, aeronautics, optics, mechanics, astronomy, hydraulics, sonics, civil engineering, weaponry and city planning. There was little in nature that did not interest Leonardo enough to at least make a sketch of it. Much of it became a matter of lifelong study. The breadth of his interests, knowledge, foresight, innovation and imagination is difficult to grasp.
This article describes a method of obtaining gear tooth profiles from the geometry of the rack (or hob) that is used to generate the gear. This method works for arbitrary rack geometries, including the case when only a numerical description of the rack is available. Examples of a simple rack, rack with protuberances and a hob with root chamfer are described. The application of this technique to the generation of boundary element meshes for gear tooth strength calculation and the generation of finite element models for the frictional contact analysis of gear pairs is also described.