Broaching is a machining technique commonly used to cut gear teeth or cam profiles for the high volume manufacture of power transmission parts used in vehicles (Refs. 1–2). This article shows how the right gear blank material can make all the difference if you want to get more parts out of each tool.
While designing gear and spline teeth, the root fillet area and the corresponding maximum tensile stress are primary design considerations for the gear designer. Root fillet tensile stress may be calculated using macro-geometry values such as module,
minor diameter, effective fillet radius, face width, etc.
This paper outlines the comparison of
efficiencies for worm gearboxes with
a center distance ranging from 28 -
150 mm that have single reduction from
5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model
to predict worm gearbox efficiency
and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant
THE FINAL CHAPTER
This is the last in the series of chapters excerpted from Dr. Hermann J. Stadtfeld's Gleason Bevel Gear Technology - a book written for specialists in planning, engineering, gear design and manufacturing. The work also addresses the technical
information needs of researchers, scientists and students who deal with the theory and practice of bevel gears and other angular gear systems. While all of the above groups are of course of invaluable importance to the gear industry, it is surely the students who hold the key to its future. And with that knowledge it is reassuring to hear from Dr. Stadtfeld of
the enthusiastic response he has received from younger readers
of these chapter installments.
A best practice in gear design is to limit the amount of backlash to a minimum value needed to accommodate
manufacturing tolerances, misalignments, and deflections, in order to prevent the non-driving side of the teeth to make contact and rattle. Industry standards, such as ANSI/AGMA 2002 and DIN3967, provide reference values of minimum backlash to be used in the gear design. However, increased customers' expectations in vehicle noise eduction have pushed backlash and allowable manufacturing tolerances to even lower limits. This is especially true in the truck market, where engines are quieter because they run at lower speeds to improve fuel economy, but they quite often run
at high torsional vibration levels. Furthermore, gear and shaft arrangements in truck transmissions have become more complex due to increased number of speeds and to improve efficiency. Determining the minimum amount of backlash is quite a challenge. This paper presents an investigation of minimum backlash values of helical gear teeth applied to a light-duty pickup truck transmission. An analytical model was developed to calculate backlash limits of each gear pair when not transmitting load, and thus susceptible to generate rattle noise, through different transmission power paths.
A statistical approach (Monte Carlo) was used since a significant number of factors affect backlash, such as tooth
thickness variation; center distance variation; lead; runout and pitch variations; bearing clearances; spline clearances; and shaft deflections and misalignments. Analytical results identified the critical gear pair, and power path, which was confirmed experimentally on a transmission. The approach presented in this paper can be useful to design gear pairs
with a minimum amount of backlash, to prevent double flank contact and to help reduce rattle noise to lowest levels.
With the ongoing push towards electric vehicles (EVs), there is likely to be increasing focus on the noise impact of the gearing required for the transmission of power from the (high-speed) electric motor to the road. Understanding automotive noise,
vibration and harshness (NVH) and methodologies for total in-vehicle noise presupposes relatively large, internal combustion (IC) contributions, compared to gear noise. Further, it may be advantageous to run the electric motors at significantly higher rotational speed than conventional automotive IC engines, sending geartrains into yet higher speed ranges. Thus the move to EV or hybrid electric vehicles (HEVs) places greater or different demands on geartrain noise. This work combines both a traditional NVH approach (in-vehicle and rig noise, waterfall plots, Campbell diagrams and Fourier analysis) - with highly detailed transmission error measurement and simulation of the complete drivetrain - to fully understand noise sources
within an EV hub drive. A detailed methodology is presented, combining both a full series of tests and advanced simulation to troubleshoot and optimize an EV hub drive for noise reduction.
The cutting process consists of either
a roll only (only generating motion), a plunge only or a combination of plunging and rolling. The material removal and flank forming due to a pure generating motion is demonstrated in the simplified sketch in Figure 1 in four steps. In the start roll position (step 1), the cutter
profile has not yet contacted the work. A rotation of the work around its axis (indicated by the rotation arrow) is coupled with a rotation of the cutter around the axis of the generating gear (indicated by
the vertical arrow) and initiates a generating motion between the not-yet-existing tooth slot of the work and the cutter head (which symbolizes one tooth of the generating gear).
Effective case depth is an important factor and goal in gas carburizing, involving complicated procedures in the furnace and requiring precise control of many thermal parameters. Based upon diffusion theory and years of carburizing experience, this
paper calculates the effective case depth governed by carburizing temperature, time, carbon content of steel, and carbon potential of atmosphere. In light of this analysis,
carburizing factors at various temperatures and carbon potentials for steels with different
carbon content were calculated to determine the necessary carburizing cycle time.
This methodology provides simple (without computer simulation) and practical guidance
of optimized gas carburizing and has been applied to plant production. It shows that measured, effective case depth of gear parts covering most of the industrial application range (0.020 inch to over 0.250 inch) was in good agreement with the calculation.
Chapter 2, Continued
In the previous sections, development of conjugate, face milled as well as face hobbed bevel gearsets - including the application of profile and length crowning - was demonstrated. It was mentioned during that demonstration that in order to optimize the common surface area, where pinion and gear flanks have meshing contact (common flank working area), a profile shift must be introduced. This concluding section of chapter 2 explains the principle of profile shift; i.e. - how it is applied to bevel and hypoid
gears and then expands on profile side shift, and the frequently used root angle correction which - from its gear theoretical
understanding - is a variable profile shift that changes the shift factor along the face width. The end of this section elaborates on
five different possibilities to tilt the face cutter head relative to the generating gear, in order to achieve interesting effects on the
bevel gear flank form. This installment concludes chapter 2 of the Bevel Gear Technology book that lays the foundation of the following
chapters, some of which also will be covered in this series.