Induction hardening is a heat treating technique that can be used to selectively harden portions of a gear, such as the flanks, roots and tips of teeth, providing improved hardness, wear resistance, and contact fatigue strength without affecting the metallurgy of the core and other parts of the component that don’t require change. This article provides an overview of the process and special
considerations for heat treating gears. Part I covers gear materials, desired microsctructure, coil design and tooth-by-tooth induction hardening.
In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate,
cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.
This paper intends to determine the load-carrying capacity of thermally damaged parts under rolling stress. Since inspection using real gears is problematic, rollers are chosen as an acceptable substitute. The examined scope of thermal damage from hard finishing extends from undamaged, best-case parts to a rehardening zone as the worst case. Also, two degrees of a tempered zone have been examined.
The proper control of distortion after thermal treatment of powertrain components in the automotive industry is an important measure in ensuring high-quality parts and minimizing subsequent hard machining processes in order to reduce overall production costs.
Conical involute gears, also known as beveloid gears, are generalized involute gears that have the two flanks of the same tooth characterized by different base cylinder radii and
different base helix angles.
The quality of molded plastic gears is typically judged by dimensional feature measurements only. This practice overlooks potential deficiencies in the molding process.