This article discusses briefly some common manufacturing problems relating to coarse pitch gears and their suggested solutions. Most of the discussion will be limited to a low-quality production environment using universal machine tools.
Many CAD (Computer Aided Design) systems have been developed and implemented to produce a superior quality design and to increase the design productivity in the gear industry. In general, it is true that a major portion of design tasks can be performed by CAD systems currently available. However, they can only address the computational aspects of gear design that typically require decision-making as well. In most industrial gear design practices, the initial design is the critical task that significantly effects the final results. However, the decisions about estimating or changing gear size parameters must be made by a gear design expert.
Most gear cutting shops have shelves full of expensive tooling used in the past for cutting gears which are no longer in production. It is anticipated that these cutters will be used again in the future. While this may take place if the cutters are "standard," and the gears to be cut are "standard," most of the design work done today involves high pressure angle gears for strength, or designs for high contact ratio to reduce noise. The re-use of a cutter under these conditions requires a tedious mathematical analysis, which is no problem if a computer with the right software is available. This article describes a computerized graphical display which provides a quick analysis of the potential for the re-use of shaving cutters stored in a computer file.
The aim of this article is to show a practical procedure for designing optimum helical gears. The optimization procedure is adapted to technical limitations, and it is focused on real-world cases. To emphasize the applicability of the procedure presented here, the most common optimization techniques are described. Afterwards, a description of some of the functions to be optimized is given, limiting parameters and restrictions are defined, and, finally, a graphic method is described.
In the typical gear production facility, machining of gear teeth is followed by hear treatment to harden them. The hardening process often distorts the gear teeth, resulting in reduced and generally variable quality. Heat treating gears can involve many different types of operations, which all have the common purpose of producing a microstructure with certain optimum properties. Dual frequency induction hardening grew from the need to reduce cost while improving the accuracy (minimizing the distortion) of two selective hardening processes: single tooth induction and selective carburizing.
A carburized alloy steel gear has the greatest load-carrying capacity, but only if it is heat treated properly. For high quality carburizing, the case depth, case microstructure, and case hardness must be controlled carefully.
The working surfaces of gear teeth are often the result of several machining operations. The surface texture imparted by the manufacturing process affects many of the gear's functional characteristics. To ensure proper operation of the final assembly, a gear's surface texture characteristics, such as waviness and roughness, can be evaluated with modern metrology instruments.
Durability is the most important criterion used to define the quality of a gear. The freezing of metals has been acknowledged for almost thirty years as an effective method for increasing durability, or "wear life," and decreasing residual stress in tool steels. The recent field of deep cryogenics (below -300 degrees F) has brought us high temperature superconductors, the superconducting super collider, cryo-biology, and magnotehydrodynamic drive systems. It has also brought many additional durability benefits to metals.
Worm gears are among the oldest types of gearing, but that does not mean they are obsolete, antiquated technology. The main reasons for the bad experiences some engineers have with worm gearing are misapplication and misuse. No form of gearing works for every application. Strengths and weaknesses versus the application must be weighed to decide which form of gearing to use. For proper application and operation of worm gears, certain areas that may differ from other types of gearing need to be addressed.
Not long ago, many manufacturing managers thought sensitivity to environmental protection standards meant additional expenses, decreased productivity, and a plethora of headaches and hassles.